DD
MM
YYYY

PAGES

DD
MM
YYYY

spot_img

PAGES

Home Blog Page 7448

Key global trends impacting the telecoms sector in 2017 and beyond

0

As infrastructure improvements to both mobile and broadband technologies continue, the global telecommunication sector continues its transformation process in the upcoming year as well. New revenue streams relating to the apps and services are generated continuously and are being pursued by the operators of these technologies. Throughout 2016, the industry has been focused on plotting the future of 5G. Whilst standards are yet to be defined, we have seen a number of operators and vendors moving aggressively to conduct trials of the technology, as they look to shape how it will be introduced to the market. Yet 4G has also continued to evolve, with LTE-Advanced Pro deploying new features such as higher levels of carrier aggregation and interference management, which provide faster data rates and better performance at the cell edges.

The key global trends impacting the telecoms sector in 2017 and beyond are:

  • Development in 5G technology:

5G is a very important area of development for telecom and wireless companies. 5G has been predicated as an enabler of next-generation IoT and M2M applications such as autonomous vehicles and virtual or augmented reality, which will need the low latency it promises. 5G will also be necessary to meet the ever-increasing demand for higher data rates and capacity. The new use cases that will be supported by 5G will depend on proving that new radio interface technologies can deliver the throughput, latency and capacity that will be required, and therefore validating the user experience for new applications will be a key consideration. New and sophisticated testing and validation techniques are already being developed for both the network infrastructure and the interoperability of the devices themselves. By adopting the ‘testing by design’ methodology, it is possible to build in quality and an understanding of system design and performance right from the start.

  • Operators accelerate the deployment of NB-IoT:

In 2017, we will see major operators and standards bodies pushing forward with the commercialization of narrowband IoT (NB-IoT). This is a Low Power Wide Area (LPWA) technology that transmits data intermittently, enabling connected devices that use only a small amount of data to operate with low current consumption. This can greatly improve the battery life of IoT devices.

Compared to propriety LPWA technology such as LoRa and Sigfox which operate in the unlicensed spectrum, NB-IoT operates either in the LTE licensed spectrum or in re-farmed GSM spectrum. This means it uses only a narrow bandwidth, leading to spectral efficiency and allowing carriers to prioritize data-intensive internet services and applications. Testing will play a vital role in ensuring the delivery of a high quality service that operates effectively within LTE bands, while mitigating interference from other devices.

As a cellular-based standard, it is critical to ensure the ability of the network to cope with the huge number of additional devices, potentially exceeding that of current networks by an order of magnitude or more. NB-IoT devices can be flexibly deployed and scheduled within any legacy LTE system, sharing capacity and cell-site resources with other connected devices, and even using re-farmed GSM frequencies. This introduces new test challenges due to the diverse frequencies and the potential to interfere with other LTE traffic, as well as a proliferation of IoT device types with very different traffic and application profiles.

  • The cyber security war on IoT devices hits closer to home:

In 2017, the number of DDoS attacks targeting IoT devices will increase, as hackers look to exploit service provider and business networks. The recent DDoS attack on DNS provider Dyn, driven by the MIRAI malware, was the world’s largest orchestrated hack via IoT devices. It brought down Twitter, Spotify and Reddit. However, next year will likely see an escalation of DDoS attacks, with hackers targeting higher risk services and institutions with far more severe consequences.

Imagine hospitals being cut off from internet-enabled life-saving devices, or power grids plunged into darkness, leaving towns and cities without access to crucial utilities like heating and electricity. Public transport systems could grind to a halt, and traffic light systems could stop working, causing havoc on roads. However, service providers and enterprises can put measures in place to prevent attacks of this scale. This can be achieved by implementing a modern security strategy which involves stress testing networks using the emulation of malware threats to identify weaknesses which would be targeted by cyber hackers. As a result, firms can protect themselves and their customers from IoT-driven threats.

  • High-end smartphones will enable an ecosystem of devices using WiGig:

In 2017, we will see high-end smartphones incorporating WiGig technology – Wi-Fi in the 60GHz spectrum. This will create an ecosystem for short-range applications which can make use of this spectrum, allowing for developments and improvements in wireless video streaming, AR and VR, gaming, and networking applications. The 60GHz spectrum offers much wider bandwidth than the current 2.4GHz and 5GHz bands, which are becoming very congested. The technology allows devices to connect at speeds of up to 8Gbps, though these will typically be over a short distance as a 60GHz signal has a range of around 10 meters at this power level.

WiGig will also bring improvements to home entertainment, allowing media to be shared across devices – for example, streaming content from a smartphone to a TV, or music from a smartphone to a speaker – without the need for and hassle of multiple wires and connectors. Productivity at work could also be improved, as WiGig could enable sharing of resources between colleagues. In 2017 the number of WiGig enabled smartphones will increase as more device manufacturers look to leverage the technology.

  • Virtualization accelerates the ‘Lab-as-a-Service’ market:

Virtualization has taken the telecoms industry by storm this year, enabling business to leverage the ability of host software solutions in the cloud. It enables companies to break free from the shackles of rigid hardware solutions, which are typically expensive and a scarce resource. Conversely, virtualized software solutions can be accessed from anywhere at a much cheaper price point, and also have the flexibility to be adapted based on the requirements of a business. These benefits will be reaped by network equipment providers and operators in 2017, particularly when it comes to testing their networks and solutions.

Virtual testing solutions will create demand for ‘Lab-as-as-Service’ solutions, where operators and NEMs can license testing solutions on a subscription basis, rather than paying for physical equipment. This can enable them to centrally manage and allocate their testing resources in a data center or cloud environment, testing services rapidly and cheaply, meaning developments can progress in parallel. It will also enable them to more frequently test their networks against cyber security threats, preventing potential damage to their businesses. We can expect some of the biggest operators in the world to move away from fixed lab environments and take advantage of emerging Lab-as-a-Service solutions as they look to reduce costs and centrally manage their resources.

 

Author: Mr. Stephen Hire is Vice President, Asia Pacific for Cobham Wireless. He has written this article keeping in mind the advancements in infrastructure, both mobile and broadband technologies that are transforming the global telecommunication sector in the years to come.

 

Major African VC Tech Financings: 2011 – 2016

0

The table below presents major VC financings in the technology sector in Africa, from 2011 to 2016, from data aggregated by CBInsights

 

Notable African VC Tech Financings
2011 – 2016 YTD (2/16/16)
Rank Company Logo Round Amount ($M) Country Quarter
1 Jumia  Jumia Series C 150 Nigeria Q4’14
2 Takealot Online  Takealot Series A 100 South Africa Q2’14
3 Africa Internet Group  Africa Internet Group Corporate Minority 83.5 Nigeria Q1’16
4 Wananchi Group Holdings  Wananchi Unattributed VC – II 57.5 Kenya Q2’11
5 Smile Telecoms Holdings  smile group Unattributed 50 Mauritius Q3’15
6 Travelstart  TravelStart Unattributed VC 40 South Africa Q1’16
7 Zando  Zando Series A 26 South Africa Q4’12
8 Konga.com  Kongacom Series B 25 Nigeria Q1’14
8 Teraco Data Environments  TeracoData Series C 23.2 South Africa Q2’11
10 BRCK  BRCK Seed 3 Kenya Q1’16
11 Kopo Kopo  KopoKopo Series A 2.1 Kenya Q4’15

How vulnerable is Nigeria’s electricity infrastructure to cyber-attack?

0

Ukraine’s national power company Ukrenergo says a blackout in Kiev on December 17 and 18, 2016 was caused by a cyber attack, Reuters reports.

Preliminary findings from an investigation determined that workstations and SCADA (supervisory control and data acquisition) systems at a 330 kilowatt substation were hit by external attackers.

The company hasn’t said whether it has linked the attack to any specific group or nation state.

Honeywell lead cyber security researcher Marina Krotofil, who assisted with the investigation, told Reuters the attackers “actually attacked more but couldn’t achieve all their goals.”

Krotofil said the attackers hid in Ukrenergo’s network undetected for six months before they caused the blackout. “The team involved had quite a few people working in it, with very serious tools and an engineer who understands the power infrastructure,” she said.

A previous cyber attack in December 2015, blamed on Russian hackers, caused blackouts affecting 225,000 people in western Ukraine and damaged power distribution equipment.

We ask this simple question: How vulnerable is Nigeria’s electricity infrastructure to cyber-attack? Is the nation prepared for this type of attack? Or that since we are used to blackout, that it does not really matter.

Atlas Mara through Visa launches attack against Flutterwave, Playstack as African Fintech battle heats up

0

Everyone wants to be a big player in Africa’s payment ecosystem. The consensus is that the market is still for anyone to win. It is fledgling and it is very exciting.

Global payments technology company Visa has signed a commercial partnership with Atlas Mara Limited the sub-Saharan Africa financial services group, as part of a wider strategic partnership to introduce a dynamic suite of payment solutions and expand access to electronic payments within the Sub-Saharan Africa region.

Through this partnership, Atlas Mara’s banks will be able to leverage already existing Visa payment platforms, such as mVisa and Visa Direct, to provide their customers new ways of transacting that are convenient, and secure.

In 2016, Visa launched mVisa, a new mobile payment service that brings, for the first time in Africa, an interoperable, versatile and secure mobile payment solution, powered by Visa and its partner financial institutions. With mVisa, consumers can directly access their funds in their bank accounts to pay merchants (person-to-merchant or P2M) or individuals (person-to-person or P2P).

Because the transaction runs through the Visa network, VisaNet, the consumers and merchants do not need to be customers of the same bank or mobile operator.

Flutterwave and Paystack will have to compete against many companies in coming months as this sector heats up in the continent.

 

Precision agriculture technology is eating our food problems

0

When you feel hunger, only one thing matters; Food. For those fortunate enough, food is available on demand right in your home, or is a phone call, short drive, or click of a button away. For those less fortunate, access to food is a much bigger issue than deciding what to eat?—?it can be a matter of life or death. Regardless of your fortune, access to sufficient, safe, and nutritious food is important for all people at all times to maintain healthy and active lives.

 

842 million people live with chronic hunger and food insecurity.

— United National Food and Agricultural Organization (FAQ)

With the right mix of technologies, entrepreneurs are cooking up fresh ideas from farm to table to serve the world’s growing food needs.

Indeed, the world needs food for a growing population that promotes healthy nutrition and sustainable resource management. Most current food production processes are unsustainable, lack complete nutrition and are too inefficient to provide enough food for the global population.

This has provided huge opportunity. Nigeria-based Zenvus is taking that challenge for the huge opportunity that lies above.

Zenvus is one of these pioneering technology leaders. The agtech company delivers precision tools that help to eat food problems.

Zenvus is an intelligent solution for farms that uses proprietary electronic sensors to collect soil data like moisture, nutrients, temperature, pH etc. It subsequently sends the data to a cloud server via GSM, satellite or Wifi. Algorithms in the server analyze the data and advise farmers on what, how and when to farm. As the crops grow, the system deploys hyper- spectral cameras to build crop normalized difference vegetative index which is helpful in detecting drought stress, pests and diseases on crops. The data generated is aggregated, anonymized and made available via subscription for agro-lending, agro-insurance, commodity trading to banks, insurers and investors. Zenvus also has a mapping feature which can help a farmer map the farm boundary with ease.

Last year Zenvus participated in the Singularity University Global Summit. We are expanding our partnership networks as we build a modern 21st century technology business.

 

Zenvus >> Farmers wanted!

[adapted SU]